In late fifties when we civil engineering students of Government College of Engineering Pune were taught this subject of cement concrete, it was emphasized that Concrete structures like bridges will last for over 60 years whereas residential accommodation can give satisfactory service for over 100 years! The cement concrete was quite strong and durable, even better than “finely and freshly ground lime” under use then. Even RCC was started being used by engineers with success.
We students were awestricken with the new found material and the technique of its use. The mix design for 1:2:4 (volume batch concrete) RCC, we used to need 15-16 one CWT (112 Lbs) bags of cement to make 100 cft of finished concrete. Sometime the cement consumption could go up to even 17 bags.
The mix design was introduced with a hollow box (3’ x 3’ x 3’) packed fully with coarse aggregate additionally packed with fine aggregate and in turn this interfiled with finer powder of cement. The body of concrete being aggregate the cement was only the binding agent as we could understand.
Any more small voids in this box were supposed to be filled with the expanding cement gel after it reacts with the mixing water in the concrete. The resulting concrete was supposed to be even waterproof.
We the engineering students were really overwhelmed by the good qualities of the cement and began enthusiastically looking forward to design cement concrete structures. By that time British and other foreigners had progressed into pre-stressed and/ or post-tensioned concretes. Indians accepted that as well as a technical gift from West. Concrete designing had become a science and wordy wars about volume batching versus weigh batching were fought in technical journals with gusto. Whatever concrete construction was executed before Second World War in India was by the British Engineers done through the Indian ‘Mestries’. They had no restriction of time or money for the projects and accordingly these constructions are standing even today as good examples. (Of course, now the British or other Western engineers have relaxed their vigil and got confused due to the large varieties of cements in the market, their output is dropped to ‘average’). Indian engineers used concrete since independence without teaching their masons and mestries the correct techniques needed to use this new material properly (since they themselves were unaware of that aspect). Cement was being used as readymade ground lime only. The engineers took it to increase the strength or durability of concrete, one needs to add cement in excess to the mixture.
Once a boxed structural member was concreted, the sample of the concrete used therein was to be cast in cubes and after proper curing; the cube was to be crushed to determine the quality (compressive strength) of the concrete used in the member. Bureau of Indian Standards brought a standard for this cube test and use of concrete to give impetus to good concrete construction. After they published IS: 456 of 1978 regarding use of plain & reinforced cement concrete giving the direction to use more cement (up to 540 Kgs per CM3 of concrete) for durability consideration, use of more cement for strength as well as durability purposes became rule rather than exception. Most of the ‘experts’ included in the BIS committee on Cement Concrete Section are either representing large construction companies or cement manufacturing companies who were only interested in increasing the use of cement to earn more money. They were not necessarily interested in propagating use of some other material in construction. Isn’t it? Not only cities but even small towns became concrete jungles and no wonder the mother Earth reacted by increasing environmental temperatures everywhere.
Cement factories grew in number as well as size and they manufactured special cements not only for refractory or sulphate resistance purposes but also to give higher strength in compression (instead of 33 N/mm2) of 43, 53 or even higher (at the end of 28 days curing). When the manufacturers professed that the stronger concrete is more economical, gullible people, even engineers, enthusiastically started using it in their designs. This was the time when dangers of cement concrete even with reinforcement were started appearing on horizon. Defects like, rusting of steel and carbonation of concrete, cracking of “stronger” cement concretes after a few days use, deterioration of the concrete members after a few seasons of intensive (though within designed loads) use, destruction of concrete because of alkali-aggregate reaction in certain circumstances, cracking of concrete with excessive cement quantity leading to destruction of the monolith, members failing because of inadequate concrete strength development etc. made frequent appearances. Deterioration of Vashi Bridge near Mumbai and failure of many bridges like Mandovi River Bridge in Goa as well as overhead tanks, multistoried concrete residential buildings etc compelled Indian civil engineers to wake up and study the technology and its application in India thoroughly. According to their thinking, the defects might be due to various reasons like the pour was incorrect, segregation might have taken place while pouring, placement of reinforcement might not be exactly as per design or might have been shifted to wrong places during concreting or the compaction might not have been done effectively or the curing might not have been done correctly or defect might be in erection and/or removal of form work. Moreover, even when the test cubes were cast along with the member being concreted, further progress in concreting was never held up (as obstacle to maintain progress of work) till the 28 days crushing strength of the cubes certifying the strength of the concrete became available to the site engineer. In the name of progress, the constructors gave more importance to the test cubes being cast and tested successfully than the concreting of the members themselves (to avoid any future problem arising in case the test results were not found satisfactory). This led to having individuals other than site engineers specializing in casting of test cubes. This was found to result in the cubes not really as representative a sample of the concreting of the member as desired. In addition to the use of excessive cement in concrete, this and other shortcomings in use of correct technology and procedures led to the defects in concrete that have surfaced in India over the years.
From the basic principals of concrete technology one can list following essentials of strong and durable concrete by using Ordinary Portland Cement:-
1. Cement is only binding agent and has hardly any inherent strength as a material. It can adhere to surfaces of strong pieces as gum and give strength to the monolith body.
2. For convenience, pieces of stones as aggregates of various sizes are considered suitable to give a body to concrete. To have cost within limits, quantity of cement should be small and sizes of coarse aggregate pieces be as large as possible in the mixture.
3. The cement only binds the various aggregate pieces together to make the concrete monolith. Since cement as binder has no inherent strength, the binding layer should be as thin as possible. Moreover, cement being in very fine form has a high coefficient of thermal expansion/contraction compared to that of aggregates used and hence thinner the layer, safer it is. So cement must be used as least as practicable.
4. Strength of concrete has very little bearing on the quantity of cement in the concrete in the long run. Larger the (than necessary) quantity of cement, the concrete is likely to deteriorate over time faster due to temperature variations in the environment.
5. To make concrete stronger, less voids or gaps should be permitted in the concrete monolith. This is possible by using all the intermediate sizes of aggregate (to reduce the size of gaps) and adequate compaction of the concrete in-situ after pouring. Water should be just sufficient to make the rich chemical gel with cement. Extra water remaining if any is likely to create voids after evaporation.
6. In the concrete mixture only cement is a manufactured substance and hence is more susceptible to environmental damage and deterioration and hence least durable.
Therefore, thinnest possible gel around the aggregate pieces is all that is needed to make a durable concrete.
7. In short, to make strong and durable concrete what we need is well graded aggregate to fill the volume of concreting (box?), added with minimum required cement to cover the interstices with strong gel formed with little more than essential, say within 40% water as compared with cement quantity. To make it durable, prevent any voids within the monolith by adequate compaction. You can provide compaction such that the strength of the concrete is as designed.
The mixture must be uniform and before setting time of the cement is reached, compaction must be completed. Once concrete is cast and set, it should be cured with water at least for 7 days and then damp curing may be satisfactory.
8. If possible and convenient, it is suggested that concreting can be done by first filling coarse aggregate in the centering boxes and colloidal mass of sand and (water added) cement is poured to fill the voids before compaction. This will ensure that the semi-elastic gel that is produced by the colloidal mixture will be able to coat the aggregate pieces effectively with less cement at the same time giving better strength.
9. As far as reinforcement is concerned, the quantity of steel as designed must be placed at correct locations to resist tensile stress development in concrete. It must be ensured that the steel reinforcement bars do not shift during pouring and compaction of concrete. Adequate concrete cover must be around the reinforcement to prevent environmental carbon-di-oxide, chlorine or moisture from reaching the bars and corroding them.
In short, it can be seen that once the ingredients of concrete are properly selected, ensuring W/C ratio around 0.4 and adequate compaction to prevent any voids in hydrating (cement in) concrete are the only ways to ensure strong and durable concrete. If these conditions are adhered to, then adding any extra quantity of cement (per cubic meter of concrete) has no positive effect on the strength or durability of concrete. Rather more cement is likely to make the concrete less durable since thicker cement layer will have more shrinkage/ expansion than other ingredients of concrete as environmental temperature wane and wax giving rise to destruction of the monolith.